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Abstract

This paper studies numerically the deformation of thin films made of materials
undergoing martensitic phase transformations by using subdivision surfaces. These
thin films have received interest as potential microactuators, and specifically a tent-
like configuration has recently been proposed. The study of such configurations requires
adequate resolution of inhomogeneous in-plane stretch, out-of-plane deformation and
transition regions across which the deformation gradient changes sharply. This paper
demonstrates that subdivision surfaces provide an attractive tool in the numerical
study of such configurations, and also provides insights into the tent-like deformations.

1 Introduction

Thin films of shape-memory alloys have received attention as potential microactuators since
the recognition that they possess the largest work per unit volume among possible actuator
systems [7]. This is because the martensitic phase transformation, a solid-to-solid phase
transformation responsible for the shape-memory effect, provides a direct link between the
macroscopic deformation and microscopic changes in the crystalline unit cell. This advantage
is maximized by using single crystal thin films where the geometry of the structure is carefully
chosen to be consistent with the inherent crystallography of the material. This, however,
requires careful analysis of the deformation and this in turn requires a numerical method
that is capable of resolving inhomogeneous in-plane stretch, out-of-plane deformation and
transition regions across which the deformation gradient changes sharply. Such an analysis
is the goal of the paper.

The martensitic phase transformation is a diffusionless process where, at a certain tem-
perature θc, the preferred crystallographic configuration of the material changes. Typically,
the high-temperature phase, the austenite, has greater symmetry than the low-temperature
phase, the martensite, and therefore the martensite has a number of symmetry-related vari-
ants. Consequently the energy density of the material has a multi-well structure, with each
well associated with a different phase/variant. The different phases may co-exist in a con-
figuration, and one also has an interfacial energy which is often modeled as a quadratic
penalization of the strain gradient.
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This raises the numerical difficulty, common to many other structural and materials prob-
lems, of accurately evaluating energies which depend on the first as well as second derivatives
of the deformation. Numerical evaluation of such energies requires a discretization which is
continuous in the deformation as well as in its first derivative. Consequently one can not use
simple linear elements, and higher order polynomials bring their own problems. Cirak and
Ortiz [4] addressed this by adapting sub-division surfaces, which were introduced and widely
used in computer graphics (see for example, [10]), as elements to study finite deformation
of thin-shells. We further develop this approach, and demonstrate how subdivision surfaces
can be used for the study of martensitic thin films.

Our starting point is the theory of martensitic thin films proposed by Bhattacharya and
James [2]. We use our computational method to explore in detail a tent-like deformation that
has potential application as an actuator. The idea is to deposit a single crystal thin film of a
martensitic material on a (silicon) substrate in such a manner that it is approximately lattice-
matched to the austenite. Then, a small square region of the film is released by back-etching
to give a free-standing membrane which is bonded on all sides. The free-standing region is
in the austenite state when hot but transforms to the martensite on cooling. Further, if the
crystallography of the material satisfies some special conditions, and if the orientation of the
released region matches specific crystallographic directions of the material, then the films
pops up like a tent in the martensitic state. Therefore we have a configuration that switches
between a flat and a tent-like shape when subjected to temperature cycling.

A detailed understanding of the exact nature of the deformation is the first motivation
of our study. While the overall shape and structure conforms to the simplified analysis of
Bhattacharya and James [2], we find an unexpected breaking of the symmetry at the tip.
Studying the effects of misalignment is the second aim of our work, since it is difficult in
practice to align the released region exactly with the crystallography of the material. We
find that the overall structure remains stable for small deviations but it begins to deviate
substantially beyond 10 degrees of misalignment. Finally, since the released area may not
be a square, we study a rectangular region as an example.

Belik and Luskin [1] also studied tent-like deformation using a finite element method.
However, their model of interfacial energy replaces higher order derivatives with a term that
lives on the element edges. Consequently, their energy depends critically on the triangula-
tion and they arranged their triangulation in a way such that the expected phase/variant
boundaries lie on such edges. Unfortunately such an approach requires an accurate a priori
knowledge of the phase/variant boundaries and this is not possible in the situations like
those describe above.

The article is organized as follows. In Section 2, the continuum model and the relevant
energy terms are introduced. The details of the finite element simulation are described in
Section 3, followed by a short review in Section 4 of the subdivision surface method proposed
in [5]. Section 5 contains the simulation results. Section 6 verifies our computational results
further with some analytical calculations. Some discussion of these results and an outlook
to further improvements on this method are given in Section 7.
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Figure 1: Deformation of a reference configuration Ω at a certain time t.

2 The model of thin films

Consider a thin film occupying a flat reference configuration Ω ⊂ R2 and undergoing a time-
dependent deformation y : Ω × R+ → R3 as depicted in Figure 1. We assume that y(x, t)
is injective and orientation preserving in the plane for all times. Furthermore, assume that
y(x, t) is sufficiently smooth to compute the deformation gradient F (t) = ∇y(t) and the
second derivatives almost everywhere.

The dynamics of the film are governed by an energy consisting of the kinetic energy Ekin,
a multi-well strain energy Estrain, and the interfacial or exchange energy Einterfacial, modeled
using a higher (or strain) gradient. After suitable non-dimensionalization, these energies can
be written as follows.

Kinetic energy. The kinetic energy is given by

Ekin =

∫
Ω

1

2
|yt|2 dx.

Strain energy. The strain energy of the crystal is given as the integral of the strain energy
density W ,

Estrain =

∫
Ω

W (F (x)) dx.

To model the phase transition of the shape-memory material, one can use a strain energy
density with multiple minima at the preferred positions in the strain space. Frame indiffer-
ence requires the energy to be a function of the right Cauchy-Green strain tensor C = FTF
alone. In our case, we consider a cubic-tetragonal phase transition and thus assume W to
be of the form

W (F ) = W (Cij) = a ·
(
C11 + C22 − ξ2

)2
+

b · Φ(C11 − C22)
(
(C11 − C22)

2 − ξ4
)2

+ c · C2
12 (1)

with positive coefficients a, b, and c.
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Figure 2: Contour plot of the energy landscape in the C11-C22 plane.

The function Φ augments the energy barrier in the nonconvex term of the strain energy
and is given by

Φ(q) = 1 + η · e
−q2

κξ2 , (2)

with two parameters η and κ. The energy density has its minima on the set

O(2, 3)U1 ∪O(2, 3)U2

where

U1 =

( √
1 + ξ2 0
0 1

)
and U2 =

(
1 0

0
√

1 + ξ2

)
.

are the transformation stretches of the two variants of martensite, and O(2, 3) = {A ∈
Mat(3, 2) : ATA = Id2×2}. Notice that one variant represents stretching in the x1-direction
while the other represents stretching in the x2-direction. The contour plot of the energy is
shown in Figure 2.

For later use, we also consider the following. We will be interested in situations where
the crystallographic axes do not coincide with the coordinate axis. In such sitatuions, we
will take the energy density to be of the form

W (RTC(x)R) (3)

where R ∈ SO(2) is the rotation matrix that takes the crystallographic axes to the coordinate
axes.

Interfacial Energy The interfacial energy penalizes changes in the gradient and intro-
duces an inherent length scale in the system. The interfacial energy used is given by

Einterfacial =

∫
Ω

1

2
|4y|2 dx. (4)
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Two comments are in order. First, this energy is apparently different from the commonly
used form ∫

Ω

1

2

∣∣∇2y
∣∣2 dx

where ∇2y denotes the third order tensor of second derivatives of y. However, these two
terms differ only by a null-Lagrangian (i.e., terms which can be written exclusively in terms
of boundary values). Therefore both energies yield the same governing equation. Further,
since we use only the clamped boundary condition, the boundary term is in fact zero so
that both forms agree. Second, observe that this energy also penalizes bending. In fact,
|4y3|2 = |y3,11 +y3,22|2 is the energy of bending for small deflections. However, in this paper,
we shall think of this energy as arising due to interfacial energy.

Using these energies, we derive the non-dimensionalized dynamic equations using the
principle of stationary action:

δS = 0

where S is the action integral given by

S =

∫ t1

t0

L dt.

with Lagrangian
L = Ekin − Estrain − Einterfacial.

Substituting the expressions for the energy into the action integral yields

0 = δS

= δ

∫ t1

t0

∫
Ω

1

2
|yt(x, t)|2 −W (F (x, t))− 1

2
|4y(x, t)|2 dx dt

=

∫ t1

t0

∫
Ω

ytt(x, t) · δy(x, t)− ∂W (x, t)

∂F
· ∇δy(x, t) dx dt

−
∫ t1

t0

∫
Ω

ytt(x, t)4y(x, t) · 4δy(x, t) dx dt . (5)

Since none of the energy terms are explicitly time-dependent, and the variations of y can be
chosen arbitrarily in time, equation (5) is equivalent to

0 =

∫
Ω

ytt(x, t) · δy(x)− σ · ∇δy(x)−4y(x, t) · 4δy(x) dx. (6)

where

σ(x, t) =
∂W (x, t)

∂F

is the Piola-Kirchhoff stress.
In this paper, we are interested in the equilibrium states. To obtain them from the

dynamic equations above, we introduce dissipation in the system.
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V u
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Figure 3: Mapping of unit triangle to deformed and undeformed configuration.

Dissipation We introduce linear dissipation by augmenting (6) with the following term
on the right hand side:

−
∫

Ω

βFt · ∇δy(x) dx.

It is easy to show that

d

dt
(Ekin + Estrain + Einterfacial) = β

∫
Ω

|Ft|2 dx.

The viscosity parameter β is of the order of 0.1, but it is increased when the simulation gets
closer to the equilibrium configuration, in order to accelerate the loss of energy.

In summary, our model of thin films is given in weak form by

0 =

∫
Ω

ytt(x, t) · δy(x)− σ · ∇δy(x)−4y(x, t) · 4δy(x)− βFt · ∇δy(x) dx (7)

for all δy(x) : Ω → R3 consistent with boundary conditions at each time t.

3 Numerical method

We seek to use the finite-element method to solve (7). This however requires care since this
equation contains second derivatives of the displacement. In particular, our basis should
have continuous first derivatives and we can not use the standard piecewise affine basis. We
use subdivision surfaces following [4]. A discussion of the details is deferred till Section 4
after we describe the formulation.
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We describe the reference and deformed configuration using a parametrization as shown
in Figure 3. In other words, consider a smooth local one-to-one mapping from a set V ⊂ R2

ū : V → Ω,

ū : θ 7→ x = ū(θ),

which will later be induced by a triangulation of Ω, and a mapping

u : V × R+ → R3,

u : (θ, t) 7→ y = u(θ, t),

such that
y(x, t) = (u(·, t) ◦ ū−1(·))(x).

It follows that F = ∇y = ∇u · (∇ū)−1. The second derivatives of y can be computed in a
similar fashion by noting that

0 =
∂

∂xi

Id =
∂

∂xi

∇ū∇ū−1 = ∇ūxi
∇ū−1 +∇ū∇ū−1

xi

and using the chain rule. Further, the variation in y is related to the variation in u by

δy(x) = δu ◦ ū−1.

In the following we often continue to write 4y and 4δy since the full expression using u
and ū are somewhat lengthy, but assume that they are written in terms of u and ū.

Now, assuming we have a non-overlapping set {Vq}m
q=1 such that we have mappings u and

ū as above on all Vq and
m⋃

q=1

ū(Vq) = Ω,

equation (7) yields

0 =
m∑

q=1

[ ∫
ū(Vq)

(utt(·, t) ◦ (ū(·))−1)(x) · (δu(·) ◦ (ū(·))−1)(x) dx

−
∫

ū(Vq)

σ(∇u · (∇ū)−1) · ∇δu · (∇ū)−1 dx

−
∫

ū(Vq)

4y · 4δy dx

−
∫

ū(Vq)

β∇ut · (∇ū)−1 · ∇δu · (∇ū)−1 dx

]
,

where all the functions u and ū and their derivatives are evaluated at ū−1(x), as it is explicitly
written in the first term. Now one can pull the integration back onto the parameter space
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so that one has

0 =
m∑

q=1

[ ∫
Vq

utt · δu |∇ū|dθ

−
∫

Vq

σ(∇u · (∇ū)−1) · ∇δu · (∇ū)−1 |∇ū|dθ

−
∫

Vq

4y · 4δy |∇ū|dθ

−
∫

Vq

β∇ut · (∇ū)−1 · ∇δu · (∇ū)−1 |∇ū|dθ

]
. (8)

We discretize u, ū using the Loop subdivision surface basis functions {ϕi}n
i=1 so that,

ū(θ) =
n∑

i=1

ūiϕi(θ)

and

u(θ, t) =
n∑

i=1

ui(t)ϕi(θ).

with coefficients ui, ūi. With this discretization, we follow the usual finite element approach
and enforce equation (8) for the test function δu in the span of {ϕj}n

j=1. In our formulation,
we treat the ūi associated with the reference configuration as fixed coefficients and the the
ui associated with the deformed configurations as variables which we solve for. This yields
an equation of the form

M ü = f(u, u̇)

with the mass matrix Mij =
∑m

q=1

∫
Vq

ϕiϕj |∇ū|dθ. We compute all integrals using a simple

one point approximation. We then lump the mass matrix in a row-sum manner and ad-
vance the remaining second order ordinary differential equation in time using a second order
accurate explicit Newmark scheme.

4 Loop Subdivision Basis Functions

In order to provide a meaningful discretization of the continuous model in equation (7),
we have already noted that the approximating functions need to be in H2. A continuously
differentiable discretization will provide such a setting.

We begin in one space dimension. Consider the discretization1 shown in Figure 4. A
simple linear finite element basis function associated with node 0 is shown as a dashed line.
It is continuous but not continuously differentiable. Therefore, we would like to replace
it with a C1 (or smoother) basis function, as shown by the solid line while retaining two
properties: first it has to have finite support and second it has to have one degree of freedom
centered at the node. A cubic B-spline has exactly these properties, and the support is

1The discretization is shown to be regular but that is not necessary.
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still polygonal lines, but converge to the smooth spline. The nodes are on every integer
parameter value.
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Figure 5: A triangulation with the support of the basis functions.
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confined to four adjoining ‘elements’ centered around the middle node. In other words, we
replace the dashed polygonal curve with the solid approximating spline curve using the same
nodes.

To be precise, consider the two-dimensional polygonal curve connecting the n points
x0

i = (θi, φi). We can generate an approximating spline as follows (see for example, [10]).
Generate a new set of 2n− 1 points by subdivision:

x1
2i =

1

2
(x0

i + x0
i+1)

and

x1
2i−1 =

1

8
(x0

i−1 + 6x0
i + x0

i+1)

and connect them with a polygonal curve. The is shown in Figure 4. Repeating this process
leads, in the limit, to a C2 cubic spline curve. The linearity of the process ensures that the
limiting curve can be written as a linear combination of basis functions with the original
vertex positions as weights. Starting with the polygonal curve generated by the linear basis
functions gives us a new basis function with the properties described above. This algorithm
has to be modified for boundary nodes, but this is easily accomplished in one dimension.

We now extend this idea to two space dimensions. We start with a given triangulation as
shown in Figure 5. As in one dimension, we seek to replace the piecewise linear basis functions
with a C1 basis function that is compactly supported and has one degree of freedom. The
Loop subdivision basis functions [8] do so by replacing the polyhedral surface generated by
the linear basis function with a C1 surface. The basic idea is the quadrisection of triangles
with a particular choice of weights for the new nodes. We refer the reader to Zorin and
Schröder [10] for details. In our finite element context, the support of the chosen subdivision
basis functions is the 2-ring of triangles around a given vertex , as shown in Figure 5. The
particular basis functions depend on the topology (connectivity) of the triangulation.

Care has to be taken in fixing the boundary conditions, because of the extended support
of the basis functions. One can either change the subdivision rules near the boundary to
prescribe position and normal vectors to the surface at the boundary [3] or add a layer of
“ghost” vertices around the domain as suggested in [5], which is the approach chosen here.

Our simulation uses the routine described in [9] to efficiently evaluate the basis functions
for a given triangle patch.

In order to achieve the setting in Section 3, we start with a triangulation of the computa-
tional domain. The mapping ū uses the vertex positions of that triangulation as coefficients.
The deformed configuration then has variable coefficients in R3, which comprise the degrees
of freedom in our computation.

5 Simulations

In this section we present the results of various numerical experiments motivated by the tent-
like deformations described in the introduction. All simulations use the energy parameters

a = 5.0, b = 5.0, c = 5.0, ξ = 0.1, η = 3.0, κ = 1.0
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Figure 6: Time dependency of the energy in the system

unless otherwise noted. In figures displaying the surfaces, the color indicates which energy
well can be attributed to the respective position. All simulations use clamped boundary
conditions, i.e.

y =

 x1

x2

0

 , (∇y)n =

 n1

n2

0

 on ∂Ω.

We start the simulations with an initial condition corresponding to a flat surface subjected
to a small push in the vertical dimension, and wait till it bounces around and evolves into a
tent-shaped structures. A typical plot of how the various energies involved behave over time
is shown in Figure 6.

5.1 Regular Tent

Figures 7 and 8 show the shape and the details of the fully relaxed tent formed on a domain
of size 50× 50 domain non-dimensionalized units calculated using 16384 elements. Figure 7
shows a nice pyramidal shape with almost flat surfaces and rounded edges. Regions with
deformation gradient close to the first well are colored blue, those close to the second are
colored orange and the rest grey. The different variants are also labeled in Figure 7. Clearly
the flat faces correspond to almost constant deformation gradient close to the wells. This is
confirmed in Figure 8(a) which shows that the strain energy is concentrated at the boundary,
ridges and tip. This is also consistent with the fact that C11 + C22, C11 − C22 and C12 stay
close to the values at the bottoms of the energy well except in these regions.

It is clear from Figures 8(b)-8(d) that the deformation is quite complex involving the
various components of the Cauchy-Green tensor. In particular, the deformation can not be
described as a simple out-of-plan deformation (anti-plane shear) since this would force the
Cauchy-Green tensor to be of the form

C =

(
1 + α2 αβ

αβ 1 + β2

)
.

11



Figure 7: Shape of the fully relaxed regular tent. The numbering of the variants corresponds
to Figure 2.

(a) Strain energy density (b) C11 − C22

(c) C11 + C22 (d) C12

Figure 8: Energy and strain variables of the regular tent.
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Table 1: Comparison of base meshes of different resolution.
Number of Elements 256 1024 4096 16384
Absolute L2 norm of surface height 30.0 35.1 37.3 38.1
L2 norm of difference to next higher resolution 3.6 2.7 0.7
Interfacial Energy 3.8 4.7 5.2 5.6
Strain Energy 28.4 15.1 8.6 5.4

It is also evident from Figures 8(b)-8(d) that the C11 − C22 component of the Cauchy-
Green tensor transitions from ξ2 to −ξ2 across the ridges whereas the C11 + C22 and C12

components remain essentially uniform. In other words, In other words, the Cauchy-Green
tensor effectively traverses the energy surface along the straight line as it transitions from
one well to another along a ridge. This is not surprising given that the energy grows quickly
(quadratically) in the convex directions, C11 + C22 and C12. We shall elaborate on this with
some analytic considerations in Section 6.

Figure 8 also reveals that the computed tent is not exactly symmetric despite the fact
the energy and geometry are. Instead, the tip where the four ridges meet appears to split
into two creating a narrow strip of one contiguous variant. This asymmetry was observed in
a simulation with a carefully constructed symmetric mesh and a symmetric initial condition.
We also find that the mirror image of the solution shown in Figure 8 is equally stable. The
tip of this steady state solution shows features similar to the tents with a slightly rotated
strain energy density like in Section 5.4. However, a symmetric initial condition generated
by symmetrizing this solution—in order to create a symmetric initial condition with very
low energy—leads to a relaxed state that is symmetric. This symmetric state has slightly
lower total energy than the asymmetrical one (11.01488 non-dimensionalized units, versus
11.01512 for the asymmetric tent).

We consider this breaking of symmetry real and not an artifact of numerical discretization,
and believe that it constitutes a local minimum of the energy that has a significant domain
of attraction.

Finally observe from Figure 8(a) that the energy density is highest near the boundary,
especially at the corners, and significantly higher that that at the ridges and the tip. Our
clamped boundary conditions force the deformation gradient to be identity and thus C11+C22

to take the value 2 at the corners (as also seen in Figure 8(c)). This value is different from
the value C11 + C22 = 2 + ξ2 at the bottom of the wells and the energy grows quadratically
in this direction.

5.2 Convergence

A comparison of the tents formed in a region of size 50 by 50 (nondimensionalized units)
with four different base meshes consisting of 256, 1025, 4096 and 16384 triangles is shown
in Figure 9. Various quantitative details including L2 norm of the height and energies are
given in Table 5.2. We conclude that the 4096 element mesh provides a sufficient resolution
for the following simulations and requires only a moderate amount of time to fully relax.
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Figure 9: Cross section at x2 = 0 of tents formed with different numbers of elements in the
base mesh.

Table 2: Average energy density comparison for different domain sizes
Domain size 12× 12 25× 25 50× 50
Interfacial energy per domain area 1.4 · 10−2 5.1 · 10−3 2.1 · 10−3

Strain energy per domain area 9.0 · 10−3 3.5 · 10−3 3.4 · 10−3

5.3 Physical Size of the Domain

Figures 10(a) to 10(c), show the shapes of fully relaxed tents formed on domains with size
12×12, 25×25 and 50×50 nondimensionalized units. The same number of elements (4096)
were used in each computation. Figure 10(d) shows the cross sections of the various surfaces
at y = 0 for direct comparison.

When the domain size is extremely small, the interfacial energy dominates and the tent
is very rounded (Figure 10(a)). Further, no area can be clearly identified as belonging to
any variant. However, as the domain size increases, the tent becomes more pyramidal as the
sides become flatter with the deformation gradient taking values in the energy wells. The
size of the boundary layer in between areas of constant strain does not vary significantly
with the domain size; instead the areas of constant strain close to one of the two minima in
strain space become larger. Table 2 shows the declining average energy densities for different
domain sizes.

5.4 Crystallographic Orientation

The strain energy density (1), and in particular the position of the energy wells, embed
information about the crystallography. In the examples above, the crystallography and the
physical geometry of the domain were aligned in such a manner as to form a nice tent. Specif-
ically the domain was a square and the preferred interface (ridge) directions coincided with
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(c) 50× 50

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

x
1

(d) Comparison of the cross sections

Figure 10: Influence of the physical size of the domain. Color coding as in Figure 7.

Table 3: Comparison of the energies of the tents with various amounts of rotation of the
crystallographic axes with respect to the domain.

Rotation 0 degrees 5 degrees 10 degrees 15 degrees
Interfacial Energy 5.2 5.2 5.4 5.8
Strain Energy 8.6 8.7 8.9 9.3
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(a) 5 deg (b) 10 deg

(c) 15 deg
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Figure 11: Shapes formed using a crystallographic axis which is rotated with respect to the
physical domain. Shown are top views, colors indicate variants as in Figure 7.
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(a) 3D View (b) C11 − C22

(c) Strain energy density (d) Interfacial energy

Figure 12: Detailed view of the tent formed with the crystallographic axes rotated 15 degrees
with respect to the domain boundaries.
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the diagonals of the domain. In practice, it may prove difficult to provide such an alignment
and this section examines the consequences of any misalignment. We keep the orientation
of the domain unchanged, but use the rotated energy density (3). The initial conditions
and boundary conditions are as before; the domain size is 50× 50 nondimensionalized units
discretized using 4096 elements.

Figures 11(a) to 11(c) show the equilibriated tents for misalignments of 5◦, 10◦ and
15◦. Figure 11(d) shows the sections at x2 = 0 and x2 = 12.5 for various misalignments
for comparison. A more detailed analysis of the tent shape formed with the 15 degree
misalignment is shown in Figure 12.

It is clear that the shape significantly changes as the misalignment increases. Indeed,
the shape becomes less of a square pyramid and more of an elongated mesa with a flat top.
Further the height decreases dramatically: the height at the center falls 6%, 14% and 22%
with a misalignment of 5◦, 10◦ and 15◦ respectively relative to a perfectly oriented one.
Indeed at 15◦ the center dips down.

In all these cases, one still has the four sectors of alternating variants. The four ridges
that separate the variants follow closely the preferred crystallographic orientation. These,
however, are no longer aligned with the squares of the square domain and consequently do
not meet at the center of the domain. Instead, the four ridges create a square in the center
whose size increases with misalignment. This square is subject to complex deformation as it
tries to lie close to one of the energy wells. Table 5.4 confirms this showing increasing energy
with misalignment.

These results indicate that for the parameters chosen here, a mismatch of less than 10
degrees in crystallographic orientation and physical domain orientation will somewhat, but
not significantly affect the deformed shape. However, at 15 degrees, the outcome is quite
different.

5.5 Rectangular Domain

Figures 13(a) and 13(b) show the equilibriated tent formed on rectangular domains of aspect
ratio 0.8 and 0.5, respectively. The crystallographic axis is aligned with the domain. The
ridges separating the variants continue to follow their preferred orientation: so the resulting
shape is an elongated roof-top. However, the ridge on top is rounded, with the curvature
decreasing with increasing aspect ratio. This shape is determined by the competition between
interfacial energy along the top ridge and the triple points where the top-ridge meets the
two inter-variant ridges. The former scales as aspect ratio and the latter is independent of
it. Therefore the interfacial energy dominates for longer domains giving a rounded top while
the ‘triple point energy’ dominates the more square domains giving a less rounded top.

6 The regular tent revisited

Let us return to the situation described in Section 5.1, and further examine the ridge and
the tip. In order to do so, it is convenient to make a coordinate transform that rotates the
coordinates by π/4 so that the ridge forms parallel to the coordinate axes. The energy is
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(a) Aspect ratio 0.8 (b) Aspect ratio 0.5

(c) Strain energy density (0.5 aspect ratio) (d) Interfacial energy density (0.5 aspect ratio)

Figure 13: Tent shapes formed on a rectangular domain.
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transformed accordingly and the energy wells are now located at

C =

(
1 + 1

2
ξ2 ±1

2
ξ2

±1
2
ξ2 1 + 1

2
ξ2

)
with C12 the non-convex direction. We do not consider any boundary conditions.

Consider a ridge running along x2 = constant. We anticipate that the deformation
gradient to depend only on x1. So we look for a solution of the form

FRidge =

 α(x1) 0
β(x1) 1
γ(x1)

1√
2
ξ

 . (9)

It is easy to verify that this satisfies the compatibility equation

curl FRidge = 0, or (FRidge)iα,β = (FRidge)iβ,α where i = 1...3 and α, β = 1...2,

which ensures that this is indeed a gradient. Plugging this into the equilibrium equation

42y + Divσ = 0, (10)

noting that everything is independent of x2 and integrating once with respect to x1 leads to
second-order ordinary differential equations for α, β and γ. These equations are

α′′ = (4a + c)

(
α2 + β2 + γ2 − 1− ξ2

2

)
α,

β′′ = (4a + c)

(
α2 + β2 + γ2 − 1− ξ2

2

)
β

+2b Φ′
(
2 β +

√
2ξ γ

)(
4

(
β +

ξ√
2
γ

)2

− ξ4

)2

+16b Φ
(
2 β +

√
2ξ γ

)(
4

(
β +

ξ√
2
γ

)2

− ξ4

)(
β +

ξ√
2
γ

)
,

γ′′ = (4a + c)

(
α2 + β2 + γ2 − 1− ξ2

2

)
γ

+bξ
√

2 Φ′
(
2 β +

√
2ξ γ

)(
4

(
β +

ξ√
2
γ

)2

− ξ4

)2

+8
√

2bξ Φ
(
2 β +

√
2ξ γ

)(
4

(
β +

ξ√
2
γ

)2

− ξ4

)(
β +

ξ√
2
γ

)
, (11)

where the prime denotes differentiation with respect to x1. If (4a + c) is large, then we may
replace the first equation with the constraint

α2 + β2 + γ2 = 1 +
1

2
ξ2.
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This in turn implies that

C11 = C22 = 1 +
1

2
ξ2 (12)

so that C traverses along the low-energy C12 direction across the ridge.
With the change of variables,

x = β −
√

2

ξ
γ, y = β +

ξ√
2
γ,

these equations simplify to

x′′ = 0

y′′ = b
(
2 + ξ2

)
Φ′(2y)

(
(2 y)2 − ξ4

)2
+ 8b

(
2 + ξ2

)
Φ(2y)

(
(2 y)2 − ξ4

)
y

= b

(
1 +

ξ2

2

)
∂

∂y

(
Φ(2y)

(
(2 y)2 − ξ4

)2)
.

Now assume for the moment that Φ = 1. Recall that we introduced this function to
increase the energy barrier between the wells. Then, the second of the equations above
reduce to

y′′ = b

(
1 +

ξ2

2

)
∂

∂y

((
(2 y)2 − ξ4

)2)
which has a solution

y =
ξ2

2
tanh

(
−2ξ2

√
b (2 + ξ2) x1

)
(13)

that smoothly transitions from −ξ2/2 to ξ2/2 over a length-scale of
(
2ξ2
√

b (2 + ξ2)
)−1

.

Thus, we have constructed a solution for which FRidge transitions between 1 0
0 1
1√
2
ξ 1√

2
ξ

 and

 1 0
0 1

− 1√
2
ξ 1√

2
ξ

 .

while satisfying the constraint (12). Indeed, a simple calculation shows that C12 = y, so that
C12 changes as a hyperbolic tangent as we go across the ridge according to (13). This shows

that the width of a typical ridge is of the order
(
2ξ2
√

b (2 + ξ2)
)−1

. Finally, note that the

x corresponds to a rotation, and thus its details depend on the exact boundary conditions.
If Φ 6= 1, we are unable to find the profile explicitly, though the above results hold

qualitatively. Further, as the barrier increases, the transition region is smaller.
In summary, these calculations show that one can traverse the ridge using the low energy

direction as suggested by our computations.
We now turn to the tip, and examine whether can be formed by two crossing ridges. We

look for a solution where the deformation gradient is of the form

FTip =

 α1(x1) α2(x2)
β1(x1) β2(x2)
γ1(x1) γ2(x2)

 . (14)

It is easy to verify that while it satisfies the compatibility equation, it can not satisfy the
equilibrium equation (10). In other words, the deformation at the tip has to be more com-
plicated than two crossing ridges.
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7 Conclusions

The results demonstrate the feasibility of using subdivision surfaces to computationally study
thin films undergoing martensitic phase transformations. Specifically, they provide a dis-
cretization which is able to naturally and accurately resolve the higher order derivatives,
while being simple enough to work with in situations involving non-convex (multi-well) en-
ergies.

The work presented here also provides insights into tent-like deformations which are po-
tentially of interest for microactuation. The computations demonstrate that this deformation
can be quite complex even in the case where the crystallographic axis is perfectly aligned
with the physical domain. In particular, the deformation involves inhomogeneous in-plane
stretches in addition to out-of-plane motions and thus can not be described as an antiplane
shear motion. The results also show an unexpected breaking of the symmetry at the tip. We
provide an analytic studies that confirm the computational results. Second, the numerical
calculations show that the overall structure of the tent remains stable for small deviations
but begin to deviate substantially beyond 10 degrees of misalignment. Thus we infer that a
manufacturing of actuators accurate to about 10 angular degrees should be sufficient to still
achieve suitable results. Finally, we show how the shape changes when the released region
is a rectangle instead of a square.

An interesting extension to the current simulation would be to allow for adaptive refine-
ment of the discretization. This is especially beneficial in the current situation involving
phase transforming materials since we have small regions of large gradients separating large
regions of small gradients, and these partitioning is a priori unknown. As demonstrated
in [?], subdivision surfaces lend themselves to a natural method for adaptive refinement, and
its implementation is currently underway.
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National Science Foundation through grant number DMS -0311788.

Appendix A

Our starting point is a one-director Cosserat model of thin films which was shown by Bhat-
tacharya and James [2] to be the rigorous asymptotic (Γ) limit of a three-dimensional theory
of martensitic phase transformation. Consider film with lateral extent Ω ⊂ R2 and thickness
h in the reference configuration. Let y : Ω → R3 describe the deformation of the mid-surface
and b : Ω → R3 be the director that describes the deformation of the thickness. The energy
(per unit thickness) of the film is given by∫

Ω

{
κ
(
|∇2y|2 + 2|∇b|2

)
+ ϕ(∇y|b)

}
dx

where the first term (with co-efficient κ) describes the interfacial or exchange energy while
the second is the stored energy. ϕ is the bulk or three-dimensional stored energy density
and it is evaluated at the 3× 3 matrix constructed as follows: the first two columns are the
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partial derivatives of y with respect to the planar co-ordinates while the third is the vector
b.

If we impose natural boundary conditions on b, then it is minimized at uniform/constant
fields. Thus, the problem above becomes one of minimizing∫

Ω

{
κ|∇2y|2 + W (∇y)

}
dx

over all y subject to appropriate boundary conditions where

W (F ) = min
b

ϕ(F |b) .

If W0 is some characteristic scale of energy density, then

λ =

√
κ

W0

is a characteristic length-scale. Indeed, if we choose W0 to be the barrier-height between
the wells normalized by the transformation strain, then λ determines the length-scale on
which the equilibrium solutions transition from one well to another. Therefore it is natural
to non-dimensionalize the problem with λ and W0:

x 7→ λx, y 7→ λy, Ω 7→ λΩ, W 7→ W0W .

We obtain the form of the interfacial and strain energy used in Section 2.
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